If it's not what You are looking for type in the equation solver your own equation and let us solve it.
42u^2-11u=0
a = 42; b = -11; c = 0;
Δ = b2-4ac
Δ = -112-4·42·0
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-11}{2*42}=\frac{0}{84} =0 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+11}{2*42}=\frac{22}{84} =11/42 $
| 6+8q-1=-9+6q | | 5x-2+11x-21=9x+3 | | 3(z-9)+43=-2(4z+3) | | 3(2x-3)=8x-13 | | 7x–5=16 | | 11x-28=7x-8=180 | | 3(z-9)+43=-2(42+3) | | q6+8q-1=-9+6q | | 6x-12=2(3x-12) | | 8x-77=3x-38=180 | | 4.7=1.8n+0.6N | | 16x-4=-9+6x+95 | | 8x-77=3x=38=180 | | 120=7x+50 | | 5/3=24x | | 6+8q−1=–9+6q | | 120=7x+5 | | (9x-8)=(5x-27) | | -8d-9=5-6d | | 23=5u+8 | | 3x+18=x2 | | 9+6p=8p−3 | | 5(p-2)=2-4p | | -4.97-5.9f=-4.3f+7.19 | | /4x+11x+-1=3(5x+7) | | -16=2n-10n | | 2/5y-8=20+¾y | | -8+10k-8=-3k+10 | | -8+10k-8=-3k | | 6+2x=276 | | -x/4=-37 | | 9-7q=9+7q+3q |